Панспермия: краткое описание теории происхождения жизни

Панспермия: краткое описание теории происхождения жизни

Когда Земля только сформировалась, около 4,5 миллиардов лет назад, она была полностью безжизненной, но уже в течение 100-200 миллионов лет появились признаки жизнедеятельности простейших организмов. Существует множество теорий происхождения жизни на Земле, и одна из них известна под названием панспермия – это предположение, что жизнь не зародилась на планете, а была занесена на нее из космического пространства в виде какого-либо биологического материала.

Базовой концепцией в теории являются так называемые «зародыши жизни» — споры или микроорганизмы с других планет. Предполагается, что они могли попасть на Землю с метеоритом, или в виде отдельных частиц, под воздействием давления света. При этом один из главных аргументов у критиков – могли ли выжить микроорганизмы на протяжении сотен тысяч и миллионов лет в космосе? Суть в том, что космическое пространство опасно для органики не только безвоздушной средой, но и множеством частиц, радиационным излучением.

Происхождение гипотезы панспермии

Впервые идеи о внеземном происхождении жизни были высказаны ученым Германом Рихтером из Германии, произошло это в 1867 году. Позднее у идей панспермии появилось множество приверженцев и противников. Концепция многократно подвергалась жесткой критике, но нередко получала и новые подтверждения. До сих пор однозначных доказательств или опровержений нет, однако последние научные исследования подтверждают ряд утверждений, фигурирующих в теории.

Для проверки выживаемости микроорганизмов в открытом космосе в 2014 году был запущен космический аппарат, содержащий схожие с метеоритами материалы и живых микроорганизмов. Через несколько месяцев спутник вернулся на Землю, его содержимое было внимательно изучено. Оказалось, что некоторые бактерии смогли выжить (не только в безвоздушном пространстве, но и при огромных температурах во время входа в атмосферу) и продолжили нормальную жизнедеятельность уже в земных условиях.

Это не указывает однозначно на правильность теории, но является веским аргументом в ее пользу.

теория панспермии

Краткое описание теории панспермии

Основной тезис, выдвигаемый сторонниками теории панспермии – возможность переноса живого биологического материала между небесными телами, с сохранением жизнеспособности простейших микроорганизмов.

Многие сомневаются, что такое на самом деле может произойти, ведь попавшие в межзвездную среду бактерии будут подвергаться крайне неблагоприятным воздействиям. Они действительно могут выжить на протяжении некоторого времени, но такие эксперименты проводились только на орбите Земли, а не в глубоком космосе, и время самих экспериментов не превышало нескольких месяцев. При путешествии продолжительностью в тысячи и миллионы лет микроорганизмы будут подвергаться нескольким серьезным опасностям:

  • Крайне низкие температуры в открытом космосе (не выше -220°С, а в межзвездной среде – всего на несколько градусов выше абсолютного нуля). Микроорганизм будет очень долго находиться в таких условиях. Доказано, что в течение 6 месяцев жизнеспособность действительно сохраняется, но возможно ли это в течение десятков тысяч лет? Однозначный ответ на этот вопрос дать сейчас невозможно. Крайне низкие температуры в открытом космосе
  • Агрессивное космическое излучение. В межзвездной среде находится множество высокоэнергетических частиц, движущихся с околосветовыми скоростями. Их количество в ограниченном объеме пространства невелико, но за тысячи лет организм неизбежно подвергнется воздействиям таких «кирпичиков вещества». Обнаружено, что в безвоздушной среде эффект менее выражен (там отсутствует кислород), но бактерия, достигнувшая пригодной для жизни планеты, с большой долей вероятности будет совсем не такой, какой отправлялась в путешествие – именно из-за мутаций, вызванных космической радиацией.
  • Выживание при входе в атмосферу. Недостаточно добраться до подходящей планеты, нужно еще попасть на ее поверхность. И это не менее сложная задача. При вхождении в атмосферу небесное тело разогревается до температуры в сотни и тысячи градусов, может полностью разрушиться вследствие сильного трения. Больше шансов на выживание будет у микроорганизмов, находящихся в глубинах породы достаточно крупного метеорита, способного достигнуть поверхности. Альтернативный вариант – отсоединение бактерий от метеорита еще до сильного разогрева, в верхних слоях атмосферы, с последующим медленным приближением к поверхности с воздушными потоками. вход в атмосферу земли

Каждая из указанных проблем пока не имеет однозначного научного рассмотрения, и потому невозможно сказать, являются ли они непреодолимым препятствием для миграции жизни через межзвездное пространство.

В настоящее время наука не отрицает возможность панспермии – не существует фактов, которые вступали бы в прямое противоречие с теорией.

Панспермия и уфология

Некоторые научные деятели озвучивают экзотическую интерпретацию теории панспермии – если говорить кратко, речь идет о занесении жизни на Землю развитыми существами и летательными аппаратами из других миров. Такие действия могли быть как случайными, так и преднамеренными, но в любом случае речь идет о далеком прошлом, ведь жизнь на планете появилась более 4 миллиардов лет назад. Впрочем, высказываются идеи о возможности «перекрестного засевания», когда «частицы жизни» попадали на Землю в несколько этапов – и где-то конкурировали, где-то нейтрально сосуществовали или даже вступали в симбиоз, ускоряя взаимное развитие.

Хотя указанное предположение выглядит наименее научным и соприкасается с так называемыми «лженауками» и «паранауками», у него есть немало приверженцев даже среди выдающихся научных деятелей. Например, идею поддерживает Ф.Крик, лауреат Нобелевской премии по биофизике, но аргументы у него весьма специфические – это свидетельства о наблюдениях НЛО, наскальные изображения людей в костюмах, схожих со скафандрами, сообщения о встречах с пришельцами.

Более научный вариант – гипотеза, разработанная учеными Ф. Хойлом из Великобритании и Ч. Викрамасингхом из Шри-Ланки. Они предполагают, что жизнь была занесена на планету случайно, а изначально микроорганизмы находились в космическом пространстве, среди газопылевых облаков.

Механизм в этом случае должен быть примерно следующим:

  • Когда астероиды и кометы, движущиеся в межзвездном пространстве, оказываются в газопылевых облаках, они «захватывают» микроорганизмы и впоследствии могут «засевать» пригодные для жизни планеты. ойлом из Великобритании и Ч. за,наскальные изображения людей в костюмах, схожих со скафандрами, сообщения о встречах с пришельц
  • Для «засевания» падение на планету не обязательно – комете достаточно пройти поблизости от нее. Солнечные лучи будут разогревать поверхность малого небесного тела, появится «хвост», и значительная часть микроорганизмов окажется в нем.
  • Дополнительный эффект может дать давление света, которое направит микроорганизмы из хвоста кометы, проходящей вблизи звезды, в сторону планет (которые могут оказаться пригодными для жизни).

Такая гипотеза интересна тем, что исключает одну из описанных выше проблем «засевания» планет – выживаемость микроорганизмов при вхождении метеорита в атмосферу. В данном случае нет носителя – только давление света. Отдельные бактерии могут попасть на планету «мягко», постепенно опускаясь из верхних слоев атмосферы.

Угрозы для биосферы

Есть множество фактов, указывающих на возможность попадания живых организмов на Землю из космоса. Но панспермия может быть не только источником жизни, но и угрозой для ее существования. Сторонники данной концепции приводят следующие аргументы:

  • В любом космическом аппарате находятся бактерии и другие микроорганизмы, а также споры. Если когда-либо они окажутся на пригодной для жизни планете, есть риск их быстрой адаптации и активного размножения. Соответственно, их жизнедеятельность приведет к выделению ряда веществ, что в долгосрочной перспективе изменит состав атмосферы и навредит «туземным» организмам.
  • Продолжительное воздействие радиации на живые организмы, находящиеся на космических аппаратах, может привести к мутации. Теоретически, это может стать причиной «повторной» панспермии, описанной в предыдущем пункте, но уже на самой Земле.

бактерии

До сих пор не было обнаружено никаких свидетельств существования жизни за пределами Земли, и это один из основных факторов, указывающих на неоднозначность гипотезы панспермии. Сторонники панспермии утверждают, что перенос «частиц жизни» осуществляется в основном небольшими космическими телами – звездной пылью, метеоритами.

Хотя бактерии действительно могут выживать в космосе, в кометном и метеоритном веществе никогда не обнаруживалось признаков живого (только некоторые органические соединения, но они могли сформироваться и естественным химическим путем).

Была ли жизнь занесена из космоса?

Учитывая огромные расстояния, огромные временные интервалы и неисчислимое множество специфических условий (а также предполагая достаточную распространенность жизнеспособного биологического материала) в межзвездном пространстве, далеко не обязательно, чтобы выживаемость микроорганизмов была высокой. Даже если выживут только сотые доли процента от общего количества, в масштабах галактики этого будет достаточно, чтобы рано или поздно жизнь оказалась на пригодной для нее планете.

Возможно, новые методы научных исследований в будущем помогут пролить свет на неоднозначные моменты в гипотезе панспермии, но пока она остается именно гипотезой – не доказанной, но и не опровергнутой.

Читайте также:  Лечение храпа с помощью хирургической операции

Ненаучные теории о происхождении жизни

1.Ненаучно: Самозарождение

Спонтанное происхождение высокоразвитой живой материи из неживой – как зарождение личинок мух в гниющем мясе – можно связать еще с Аристотелем, который обобщил мысли множества предшественников и сформировал целостную доктрину о самозарождении. Как и прочие элементы философии Аристотеля, самозарождение было доминирующей доктриной в Средневековой Европе и пользовалось определенной поддержкой вплоть до экспериментов Луи Пастера, который окончательно показал, что для появления даже личинок мух нужны мухи-родители. Не стоит путать самозарождение с современными теориями абиогенного возникновения жизни: разница между ними принципиальная.

Это понятие тесно связано с успевшими обрести статус классических экспериментами, поставленными в 1950-х Стэнли Миллером и Гарольдом Юри. В лаборатории ученые смоделировали условия, которые могли существовать у поверхности молодой Земли, – смесь метана, угарного газа и молекулярного водорода, многочисленные электрические разряды, ультрафиолет, – и вскоре более 10% углерода из метана перешло в форму тех или иных органических молекул. В опытах Миллера – Юри было получено больше 20 аминокислот, сахара, липиды и предшественники нуклеиновых кислот.

Современные вариации этих классических экспериментов используют куда более сложные постановки, которые точнее соответствуют условиям ранней Земли. Имитируются воздействия вулканов с их выбросами сероводорода и двуокиси серы, присутствие азота и т. д. Так ученым удается получать огромное и разнообразное количество органики – потенциальных кирпичиков потенциальной жизни. Главной проблемой этих опытов остается рацемат: изомеры оптически активных молекул (таких как аминокислоты) образуются в смеси в равных количествах, тогда как вся известная нам жизнь (за единичными и странными исключениями) включает лишь L-изомеры.

Впрочем, к этой проблеме мы еще вернемся. Здесь же стоит добавить, что недавно – в 2015 году – кембриджский профессор Джон Сазерленд (John Sutherland) со своей командой показал возможность образования всех базовых «молекул жизни», компонентов ДНК, РНК и белков из весьма нехитрого набора исходных компонентов. Главные герои этой смеси – циановодород и сероводород, не столь уж редко встречающиеся в космосе. К ним остается добавить некоторые минеральные вещества и металлы, в достаточном количестве имеющиеся на Земле, – такие как фосфаты, соли меди и железа. Ученые построили детальную схему реакций, которая вполне могла создать насыщенный «первичный бульон» для того, чтобы в нем появились полимеры и в игру вступила полноценная химическая эволюция.

Гипотезу абиогенного происхождения жизни из «органического бульона», которую проверили эксперименты Миллера и Юри, выдвинул в 1924 году советский биохимик Александр Опарин. И хотя в «темные годы» расцвета лысенковщины ученый принял сторону противников научной генетики, заслуги его велики. В знак признания роли академика имя его носит главная награда, вручаемая Международным научным обществом изучения возникновения жизни (ISSOL), – Медаль Опарина. Премия присуждается каждые шесть лет, и в разное время ее удостаивались и Стэнли Миллер, и великий исследователь хромосом, Нобелевский лауреат Джек Шостак. Признавая громадный вклад и Гарольда Юри, в промежутках между вручениями Медали Опарина ISSOL (тоже каждые шесть лет) присуждает Медаль Юри. Получилась уникальная, настоящая эволюционная премия – с изменчивым названием.

Теория пытается описать превращение сравнительно простых органических веществ в довольно сложные химические системы, предшественницы собственно жизни, под влиянием внешних факторов, механизмов селекции и самоорганизации. Базовой концепцией этого подхода служит «водно-углеродный шовинизм», представляющий эти два компонента (воду и углерод – NS) в качестве абсолютно необходимых и ключевых для появления и развития жизни, будь то на Земле или где-то за ее пределами. А главной проблемой остаются условия, при которых «водно-углеродный шовинизм» может развиться в весьма изощренные химические комплексы, способные – прежде всего – к саморепликации.

По одной из гипотез, первичная организация молекул могла происходить в микропорах глинистых минералов, которые выполняли структурную роль. Эту идею несколько лет назад выдвинул шотландский химик Александер Кейрнс-Смит (Alexander Graham Cairns-Smith). На их внутренней поверхности, как на матрице, могли оседать и полимеризоваться сложные биомолекулы: израильские ученые показали, что такие условия позволяют выращивать достаточно длинные белковые цепочки. Здесь же могли скапливаться нужные количества солей металлов, играющих важную роль катализаторов химических реакций. Глиняные стенки могли выполнять функции клеточных мембран, разделяя «внутреннее» пространство, в котором протекают все более сложные химические реакции, и отделяя его от внешнего хаоса.

«Матрицами» для роста полимерных молекул могли служить поверхности кристаллических минералов: пространственная структура их кристаллической решетки способна вести отбор лишь оптических изомеров одного типа – например, L-аминокислот, – решая проблему, о которой мы говорили выше. Энергию для первичного «обмена веществ» могли поставлять неорганические реакции – такие как восстановление минерала пирита (FeS2) водородом (до сульфида железа и сероводорода). В этом случае для появления сложных биомолекул не требуется ни молний, ни ультрафиолета, как в экспериментах Миллера – Юри. А значит, мы можем избавиться от вредных аспектов их действия.

Молодая Земля не была защищена от вредных – и даже смертельно опасных – компонентов солнечного излучения. Даже современные, испытанные эволюцией организмы были бы неспособны выдержать этого жесткого ультрафиолета – притом что само Солнце было значительно моложе и не давало достаточно тепла планете. Из этого возникла гипотеза о том, что в эпоху, когда творилось чудо зарождения жизни, вся Земля могла быть покрыта толстым – в сотни метров – слоем льда; и это к лучшему. Скрываясь под этим ледяным щитом, жизнь могла чувствовать себя вполне в безопасности и от ультрафиолета, и от частых метеоритных ударов, грозивших погубить ее еще в зародыше. Относительно прохладная среда могла также стабилизировать структуру первых макромолекул.

В самом деле, ультрафиолетовое излучение на молодой Земле, атмосфера которой еще не содержала кислорода и не имела такой замечательной штуки, как озоновый слой, должно было быть убийственным для любой зарождающейся жизни. Из этого выросло предположение о том, что хрупкие предки живых организмов были вынуждены существовать где-то, скрываясь от непрерывного потока стерилизующих все и вся лучей. Например, глубоко под водой – конечно, там, где имеется достаточно минеральных веществ, перемешивания, тепла и энергии для химических реакций. И такие места нашлись.

Ближе к концу ХХ века стало ясно, что океанское дно никак не может быть пристанищем средневековых монстров: условия здесь слишком тяжелые, температура невелика, излучения нет, а редкая органика способна разве что оседать с поверхности.

Фактически это обширнейшие полупустыни – за некоторыми примечательными исключениями: тут же, глубоко под водой, поблизости от выходов геотермальных источников, жизнь буквально бьет ключом. Насыщенная сульфидами черная вода горяча, активно перемешивается и содержит массу минералов.

Черные курильщики океана – весьма богатые и самобытные экосистемы: питающиеся на них бактерии используют железосерные реакции, о которых мы уже говорили. Они являются основой для вполне цветущей жизни, включая массу уникальных червей и креветок. Возможно, они были основой и зарождения жизни на планете: по крайней мере, теоретически такие системы несут в себе все необходимое для этого.

2.Ненаучно: Духи, боги, первопредки

Любые космологические мифы о происхождении мира всегда венчаются антропогоническими – о происхождении человека. И в этих фантазиях можно лишь позавидовать воображению древних авторов: по вопросу о том, из чего, как и почему возник космос, откуда и каким образом появилась жизнь – и люди, – версии звучали самые разные и почти всегда красивые. Растения, рыбы и звери вылавливались с морского дна громадным вороном, люди выползали червями из тела первопредка Паньгу, лепились из глины и пепла, рождались от браков богов и чудовищ. Все это удивительно поэтично, но к науке, конечно, не имеет никакого отношения.

В соответствии с принципами диалектического материализма жизнь – это «единство и борьба» двух начал: изменяющейся и передающейся по наследству информации, с одной стороны, и биохимических, структурных функций – с другой. Одно без другого невозможно – и вопрос о том, с чего жизнь началась, с информации и нуклеиновых кислот или с функций и белков, остается одним из самых сложных. А одним из известных решений этой парадоксальной задачи является гипотеза «мира РНК», появившаяся еще в конце 1960-х и окончательно оформившаяся в конце 1980-х.

РНК – макромолекулы, в хранении и передаче информации не столь эффективные, как ДНК, а в выполнении ферментативных функций – не столь впечатляющие, как белки. Зато молекулы РНК способны и на то, и на другое, и до сих пор они служат передаточным звеном в информационном обмене клетки, и катализируют целый ряд реакций в ней. Белки неспособны реплицироваться без информации ДНК, а ДНК неспособна на это без белковых «умений». РНК же может быть полностью автономной: она способна катализировать собственное «размножение» – и для начала этого достаточно.

Читайте также:  Причины слабого напора при мочеиспускании у мужчин

Исследования в рамках гипотезы «мира РНК» показали, что эти макромолекулы способны и к полноценной химической эволюции. Взять хотя бы наглядный пример, продемонстрированный калифорнийскими биофизиками во главе с Лесли Оргелом (Lesley Orgel): если в раствор способной к саморепликации РНК добавить бромистый этидий, служащий для этой системы ядом, блокирующим синтез РНК, то понемногу, со сменой поколений макромолекул, в смеси появляются РНК, устойчивые даже к очень высоким концентрациям токсина. Примерно так, эволюционируя, первые молекулы РНК могли найти способ синтезировать первые инструменты-белки, а затем – в комплексе с ними – «открыть» для себя и двойную спираль ДНК, идеальный носитель наследственной информации.

3.Ненаучно: Неизменность

Не более научными, нежели истории о первопредках, можно назвать и взгляды, носящие громкое имя Теории стационарного состояния. По мнению ее сторонников, никакая жизнь вовсе никогда не возникала – как не рождалась и Земля, не появлялся и космос: они просто были всегда, всегда и пребудут. Все это не более обосновано, нежели черви Паньгу: чтобы всерьез принять такую «теорию», придется забыть о бесчисленных находках палеонтологии, геологии и астрономии. А по сути, отказаться от всего грандиозного здания современной науки – но тогда, наверное, стоит отказаться и от всего того, что полагается его жителям, включая компьютеры и безболезненное лечение зубов.

Однако простой репликации для «нормальной жизни» недостаточно: любая жизнь – это, прежде всего, пространственно изолированный участок среды, разделяющий процессы обмена, облегчающий течение одних реакций и позволяющий исключать другие. Иначе говоря, жизнь – это клетка, ограниченная полупроницаемой мембраной, состоящей из липидов. И «протоклетки» должны были появляться уже на самых ранних этапах существования жизни на Земле – первую гипотезу об их происхождении высказал хорошо знакомый нам Александр Опарин. В его представлении «протомембранами» могли служить капельки гидрофобных липидов, напоминающие желтые капли масла, плавающего в воде.

В целом идеи ученого принимаются и современной наукой, занимался этой темой и Джек Шостак, получивший за свои работы Медаль Опарина. Вместе с Катаржиной Адамалой (Katarzyna Adamala) он сумел создать своего рода модель «протоклетки», аналог мембраны которой состоял не из современных липидов, а из еще более простых органических молекул, жирных кислот, которые вполне могли накапливаться в местах возникновения первых протоорганизмов. Шостаку и Адамале удалось даже «оживить» свои структуры, добавив в среду ионы магния (стимулирующие работу РНК-полимераз) и лимонную кислоту (стабилизирующую структуру жировых мембран).

В итоге у них получилась совершенно простая, но в чем-то живая система; во всяком случае это была нормальная протоклетка, которая содержала защищенную мембраной среду для размножения РНК. С этого момента можно закрыть последнюю главу предыстории жизни – и начать первые главы ее истории. Впрочем, это уже совсем другая тема, так что мы расскажем лишь об одной, но чрезвычайно важной концепции, связанной с первыми шагами эволюции жизни и возникновением громадного разно­образия организмов.

4.Ненаучно: Вечное возвращение

«Фирменное» представление индийской философии, в западной философии связанное с трудами Иммануила Канта, Фридриха Ницше и Мирчи Элиаде. Поэтическая картина вечного странствия каждой живой души по бесконечному множеству миров и их обитателей, ее перерождения то в ничтожное насекомое, то в возвышенного поэта, а то и в существо, неизвестное нам, демона или бога. Несмотря на отсутствие идей реинкарнации, Ницше эта идея действительно близка: вечность вечна, а значит, любое событие в ней может – и должно повториться вновь. И каждое существо без конца вращается на этой карусели всеобщего возвращения, так что только голова кружится, а сама проблема первичного происхождения исчезает где-то в калейдоскопе бесчисленных повторений.

Взгляните на себя в зеркало, всмотритесь в глаза: существо, с которым вы переглядываетесь, это сложнейший гибрид, возникший в незапамятные времена. Еще в конце XIX века немецко-английский естествоиспытатель Андреас Шимпер (Andreas Schimper) заметил, что хлоропласты – органеллы растительной клетки, ответственные за фотосинтез, – реплицируются отдельно от самой клетки. Вскоре появилась гипотеза о том, что хлоропласты – это симбионты, клетки фотосинтезирующих бактерий, когда-то проглоченные хозяином – и оставшиеся жить здесь навсегда.

Разумеется, хлоропластов у нас нет, иначе бы мы могли питаться солнечным светом, как предлагают некоторые псевдорелигиозные секты. Однако в 1920-е гипотеза эндосимбиоза была расширена, включив митохондрии – органеллы, которые потребляют кислород и поставляют энергию всем нашим клеткам. К сегодняшнему дню эта гипотеза приобрела статус полновесной, многократно доказанной теории – достаточно сказать, что у митохондрий и пластид обнаружился собственный геном, более или менее независимые от клетки механизмы деления и собственные системы синтеза белка.

В природе обнаружены и другие эндосимбионты, не имеющие за плечами миллиардов лет совместной эволюции и находящиеся на менее глубоком уровне интеграции в клетке. Например, у некоторых амеб нет собственных митохондрий, зато есть включенные внутрь и выполняющие их роль бактерии. Есть гипотезы и об эндосимбиотическом происхождении других органелл – включая жгутики и реснички, и даже клеточное ядро: согласно мнению некоторых исследователей, все мы, эукариоты, стали результатом небывалого слияния между бактериями и археями. Эти версии пока не находят строгого подтверждения, однако ясно одно: едва возникнув, жизнь стала поглощать соседей – и взаимодействовать с ними, рождая новую жизнь.

5.Ненаучно: Креационизм

Само понятие креационизма возникло в XIX веке, когда этим словом стали называться сторонники различных версий появления мира и жизни, предложенных авторами Торы, Библии и других священных книг монотеистических религий. Однако по сути ничего нового в сравнении с этими книгами креационисты не предложили, раз за разом пытаясь опровергнуть строгие и основательные находки науки – а на самом деле раз за разом теряя одну позицию за другой. К сожалению, идеи современных псевдоученых-креационистов куда легче понять: на осознание теорий настоящей науки требуется-таки потратить немало усилий.

https://naked-science.ru/article/nakedscience/sem-nauchnyh-teoriy-o

три популярные вариации гипотезы панспермии

  • Литопанспермия, или межзвездная панспермия — гипотеза о том, что камни, выброшенные с поверхности планеты в результате столкновения, служат транспортом для биологического материала от одной Солнечной системы к другой.
  • Баллистическая, или межпланетная панспермия — гипотеза о том, что камни, выброшенные с поверхности планеты в результате столкновения, служат транспортом для биологического материала от одной планеты к другой внутри одной и той же Солнечной системы.
  • Направленная панспермия — намеренное распространение семян жизни на других планетах высокоразвитой внеземной цивилизацией или намеренное распространение семян жизни с Земли на других планетах людьми.

Панспермия никак не объясняет эволюцию и не пытается ответить на вопрос о том, как возникла жизнь во Вселенной. Эта гипотеза пытается разрешить тайны возникновения жизни на Земле и распространения жизни во Вселенной.

История теории

Первое известное упоминание о концепции панспермии мы находим в работах древнегреческого философа Анаксагора (500 год до н.э. — 428 год до н.э.), хотя его понимание этой идеи отличается от современной гипотезы:

«Все вещи существовали в самом начале. Но изначально они существовали в бесконечно малых фрагментах самих себя, в бесчисленном количестве и были неразрывно связаны между собой. Все вещи существовали в этой массе, но в запутанной и неразличимой форме.

Были семена (spermata) или миниатюры пшеницы и плоти и золота в примитивной смеси; но эти части, одинаковые по своей природе, должны были быть исключены из сложной массы до того, как они могли получить определенное название и свойства».  © Anaxagoras, A Dictionary of Greek and Roman biography and mythology, William Smith, Ed.

В 1743 году теория панспермии появилась в работах французского аристократа, дипломата и историка естествознания Бенуа де Малье, который считал, что жизнь на Земле была «посеяна» микробами из космоса, упавшими в океан, а не появилась в результате абиогенеза.

В XIX веке теория панспермии была возрождена учеными Йёнсом Якобом Берцелиусом (1779-1848), лордом Кельвином (Уильямом Томсоном) (1824-1907) и Германом фон Гельмгольцем (1821-1894). В 1871 году лорд Кельвин заявил:

«Следовательно, в высшей степени вероятно, что в космосе движется бесчисленное множество метеоритных камней, несущих семена жизни. Если бы в настоящее время жизни на Земле не существовало, то один такой упавший на нее камень мог бы стать так называемой естественной причиной возникновения жизни, в результате чего Земля покрылась бы растительностью». © Лорд Кельвин, из президентского обращения к Британской ассоциации развития науки

Читайте также:  Какой крем для ног наиболее эффективен от потливости и дурного запаха?

Современные исследования

В 1973 году лауреат Нобелевской премии, молекулярный биолог, физик и нейробиолог профессор Фрэнсис Крик вместе с химиком Лесли Орджелом предложил теорию направленной панспермии.

В 1984 году, во время ежегодной правительственной миссии США по поиску метеоров, команда ученых в Антарктике нашла метеорит, отколовшийся от поверхности Марса около 15 миллионов лет назад. Метеор назвали Allan Hills 84001 (ALH84001). В 1996 году в составе ALH84001 обнаружились структуры, которые могли быть остатками земных нанобактерий. Объявление, опубликованное Дэвидом МакКеем из NASA в журнале Science, появилось в заголовках новостей по всему миру, а президент Билл Клинтон сделал официальное заявление по ТВ, отметив событие и выразив свою поддержку агрессивного плана по роботизированному исследованию Марса. В результате было проведено несколько тестов — и в ALH84001 нашли аминокислоты и полициклические ароматические углеводороды.

Однако сегодня эксперты согласны, что эти вещества не являются точным признаком жизни и могли образоваться абиотически из органических молекул или из-за загрязнения в результате контакта с арктическим льдом. Дебаты по этом поводу продолжаются по сей день, но последние достижения в нанобных исследованиях вновь сделали эту находку интересной.

Объявление о доказательстве жизни на ALH84001 вызвало волну в поддержку гипотезы панспермии. Люди стали спекулировать о возможности возникновения жизни на Марсе и ее переносе на Землю на обломках планеты, отколовшихся после серьезных столкновений (пример баллистической панспермии).

Метеорит ALH84001 / © NASA

В апреле 2001 года, на 46-й ежегодной встрече Международного общества по оптической инженерии (SPIE) в Сан-Диего, штат Калифорния, индийские и британские исследователи под руководством Чандры Викрамасингхе представили образцы воздуха из стратосферы, полученные Индийской организацией космических исследований, в которых содержались сгустки живых клеток. В ответ на это заявление Исследовательский центр Эймса NASA высказал сомнения по поводу того, что живые клетки могут присутствовать на таких высотах, но отметил, что некоторые микробы могут миллионы лет пребывать в спячке, чего, вероятно, может быть достаточно для межпланетного путешествия внутри Солнечной системы.

В мае 2001 года геолог Бруно Д’Ардженио и молекулярный биолог Джузеппе Герачи из Неаполитанского университета объявили об обнаружении внеземной бактерии внутри метеорита возрастом около 4,5 миллиарда лет. Исследователи утверждали, что бактерии, содержащиеся внутри кристаллической структуры минералов, ожили в культурной среде. Они также заявили, что бактерии обладали ДНК, не похожей ни на что на Земле, и выжили после высокотемпературной стерилизации метеорита и очистки спиртом. Бактерии в итоге определили как родственные современным бактериям сенной палочки (Bacillus subtilis) и Bacillus pumilus, но, судя по всему, это другой штамм.

В апреле 2008 всемирно известный британский астрофизик Стивен Хокинг говорил о панспермии на лекции Why We Should Go Into Space («Зачем нам отправляться в космос») в рамках серии лекций в Университете Джорджа Вашингтона, приуроченных к 50-й годовщине NASA.

В апреле 2009-го Хокинг также обсуждал возможность постройки человеческой станции на другой планете и высказал предположения о том, почему внеземная жизнь может не выходить на связь с человеческой расой во время Origins Symposium в Университете штата Аризона. Физик также рассказал, что люди могут найти во время космических исследований — вроде инопланетной жизни в результате панспермии, согласно которой жизнь в виде частиц ДНК может передаваться через космос в обитаемые места.

Итоги

Будучи противоречивой научной теорией, панспермия получает от общественности либо поддержку, либо безразличие, либо критику. К примеру, религиозные группы критично отзываются об этой гипотезе.

Если же теорию удастся доказать, то сами основы таких религий серьезно пошатнутся или же упразднятся вовсе. Научное сообщество в целом поддерживает эту теорию. Опять же, если окажется, что она верна, то эта теория может изменить способы изучения эволюционной биологии, так как может предположить, что развитие в высшие формы жизни запрограммировано генетически, а это, в свою очередь, идет вразрез с теорией Дарвина.

Подобно многим теориям, у панспермии есть сторонники и противники в научном сообществе. По поводу выживаемости жизни при входе в атмосферу после пребывания на протяжении тысяч лет в космосе, где она подвергалась космической радиации, есть сомнения. Однако нет никаких доказательств того, что это невозможно. И даже если выяснится, что жизнь на Землю попала из космоса, у современной науки нет никакой информации о том, как она возникла там.

https://naked-science.ru/article/nakedscience/panspermiya-mogla-li-zhizn

Раннее рождение

Считается, что планеты начали формироваться лишь после того, как через десятки миллионов лет после Большого взрыва образовались первые звезды (вероятнее всего, много позже, поскольку эти светила с массами в десятки и сотни солнечных масс быстро взрывались или коллапсировали). Тем не менее 16 лет назад соавторы Викрамасингха Карл Гибсон и Рудольф Шилд выдвинули альтернативную модель сверхраннего планетогенеза. По их мнению, первые планеты начали формироваться вскоре после того, как через 400 000 лет после Большого взрыва Вселенная лишилась плазменной среды и заполнилась нейтральными молекулами водорода и атомами гелия. Поскольку космический газ не был однородным, в нем могли возникнуть сферические сгустки диаметром в сотни километров, которые и стали первыми планетами (или планетоидами). Согласно этой модели, Вселенная в возрасте 3−4 млн лет содержала аж 1080 газовых шаров, стянутых силой гравитации.

Температура реликтового излучения в эту эпоху измерялась сотнями кельвинов, и поэтому юные планеты были разогреты по всему объему. Но ко времени, когда Вселенной исполнилось 1,5 млрд лет, температура упала ниже точки плавления водорода (14 К), и посему планеты обрели твердую водородную кору. А еще до этого они в изобилии нахватались атомов элементов тяжелее гелия, разбросанных по космическому пространству после взрывов звезд. Так у них возникли железо-никелевые ядра, силикатные мантии и легкие внешние оболочки, содержащие водяной лед. Более того, часть воды вплоть до нашего времени и даже позже может пребывать в жидком состоянии из-за притока внутреннего тепла, обеспеченного распадом урана и тория.

 Модель Викрамасингха, которую авторы называют «Гидрогравитационной динамической космологией», неизбежно приводит к появлению проявлений жизни не на отдельных планетах, а повсеместно в галактических масштабах — благодаря сложным молекулам, которые разносятся кометами и «бродячими» планетами. Турбулентный Большой Взрыв порождает плазменную эпоху, когда на границе с пустотами (войдами) формируются гигантские протогалактики. В газовую эпоху в них зарождаются галактические шаровые скопления и планеты. В скоплениях рождаются и умирают звезды, поставляя химические элементы для создания молекул (в первую очередь молекул воды), которые в дальнейшем могут стать основой жизни на планетах, где температура опускается ниже критической точки воды (647 К). Эти планеты связаны между собой «транспортной системой» из комет, разносящих молекулы по галактике.

Планетные скопления

Согласно модели Гибсона и Шилда, гало Млечного Пути (и, предположительно, гало Андромеды и прочих спиральных галактик) содержат великое множество древнейших планет, объединенных в шарообразные скопления, которые соседствуют со звездными шаровыми скоплениями. Правда, в отличие от звездных скоплений, планетные нельзя увидеть ни в один телескоп. Тем не менее они отклоняют своим тяготением лучи космических объектов заднего плана, и поэтому их все же можно обнаружить благодаря эффекту гравитационного микролинзирования. Эти скопления устойчивы, хотя и до определенного предела. Гравитационные возмущения могут выбросить замерзшие первородные планеты в плоскость диска Галактики, где некоторые из них нагреваются до частичной или полной потери твердой водородной коры, а остальные (и их большинство) путешествуют в относительно первозданном виде. Викрамасингх и его соавторы вычислили, что в среднем каждые 26 млн лет одна из таких планет подходит к нашему Солнцу. Визитерша пересекает околосолнечное линзообразное облако из пыли и замерзшего газа, служащее источником зодиакального света, и аккумулирует на своей поверхности около тысячи тонн вещества.

Подвезите до галактики

Но при чем здесь панспермия? На Землю иногда падают массивные астероиды и ядра комет, которые выбивают земное вещество в космическое пространство. Вместе с ним в космосе оказываются микроорганизмы — некоторым из них удается уберечься от гибельных температур и давлений и сохранить свою жизнеспособность. Такие организмы могут попасть из зодиакального облака на поверхность мигрирующей планеты и вместе с ней унестись в далекий космос. Если эта планета окажется в окрестностях какой-нибудь звезды, то принесет туда зародыши земной жизни, в роли которых могут выступать не только неповрежденные микроорганизмы, но и фрагменты их генома.

Скорее всего, Земля не единственная обитель жизни в Галактике. И если жизнь зародится где-то еще, то странствующие первородные планеты понесут ее дальше. Поэтому, заключает Чандра Викрамасингх с коллегами, Млечный Путь может оказаться единой супербиосферой космического масштаба. Это и есть панспермия в ее галактическом варианте.

https://www.popmech.ru/science/12969-panspermiya-zhizn-na-zemlyu-prishla-iz-kosmosa/

Ссылка на основную публикацию
Adblock
detector